Kevin Dilks - Involutions on Baxter Objects

dmtcs:3077 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3077
Involutions on Baxter ObjectsConference paper

Authors: Kevin Dilks 1

  • 1 School of Mathematics

[en]
Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for the number of objects fixed under this involution, showing that it is an instance of Stembridge's "$q=-1$ phenomenon''.

[fr]
Les nombres Baxter comptent plusieurs familles d'objets combinatoires, qui sont tous équipés avec des involutions naturels. Dans ce papier, nous ajoutons une famille combinatoire à la liste, et nous montrons que les bijections connus entre ces objets respectent ces involutions. En plus, nous donnons une formule pour le nombre d'objets fixés par cette involution et nous montrons qu'elle est une instance du "phénomène $q =-1$'' de Stembridge.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Baxter permutations, involutions, bijections

Consultation statistics

This page has been seen 360 times.
This article's PDF has been downloaded 776 times.