![]() |
Discrete Mathematics & Theoretical Computer Science |
We characterize by pattern avoidance the Schubert varieties for $\mathrm{GL}_n$ which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighbourhoods at the identity. Although the statement of our characterization only requires ordinary pattern avoidance, showing that the Schubert varieties not satisfying our conditions are not lci appears to require working with more general notions of pattern avoidance. The Schubert varieties defined by inclusions, originally introduced by Gasharov and Reiner, turn out to be an important subclass, and we further develop some of their combinatorics. One application is a new formula for certain specializations of Schubert polynomials.
Source : ScholeXplorer
IsRelatedTo ARXIV alg-geom/9703001 Source : ScholeXplorer IsRelatedTo DOI 10.1215/s0012-7094-98-09511-4 Source : ScholeXplorer IsRelatedTo DOI 10.48550/arxiv.alg-geom/9703001
|