Marie Albenque ; Jérémie Bouttier - Constellations and multicontinued fractions: application to Eulerian triangulations

dmtcs:3084 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3084
Constellations and multicontinued fractions: application to Eulerian triangulationsConference paper

Authors: Marie Albenque 1; Jérémie Bouttier ORCID2,3

[en]
We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance.

[fr]
Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle, plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph], [en] planar maps, Eulerian triangulations, continued fractions, lattice paths, Constellations
Funding:
    Source : OpenAIRE Graph
  • Combinatorial methods, from enumerative topology to random discrete structures and compact data representations; Funder: European Commission; Code: 208471; Call ID: ERC-2007-StG; Projet Financing: ERC-2007-StG

5 Documents citing this article

Consultation statistics

This page has been seen 428 times.
This article's PDF has been downloaded 354 times.