Michael Monagan - Computing Tutte Polynomials

dmtcs:3087 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3087
Computing Tutte PolynomialsConference paper

Authors: Michael Monagan 1

  • 1 Department of Mathematics [Burnaby]

[en]
We present a new edge selection heuristic and vertex ordering heuristic that together enable one to compute the Tutte polynomial of much larger sparse graphs than was previously doable. As a specific example, we are able to compute the Tutte polynomial of the truncated icosahedron graph using our Maple implementation in under 4 minutes on a single CPU. This compares with a recent result of Haggard, Pearce and Royle whose special purpose C++ software took one week on 150 computers.

[fr]
Nous présentons deux nouvelles heuristiques pour le calcul du polynôme de Tutte de graphes de faible densité, basées sur les principes de sélection d'arêtes et d'arrangement linéaire de sommets, et qui permettent de traiter des graphes de bien plus grande tailles que les méthodes existantes. Par exemple, en utilisant notre implémentation en Maple, nous pouvons calculer le polynôme de Tutte de l'isocahédron tronqué en moins de 4 minutes sur un ordinateur à processeur unique, alors qu'un programme ad-hoc récent de Haggard, Pearce et Royle, utilisant 150 ordinateurs, a nécessité une semaine de calcul pour obtenir le même résultat.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Tutte polynomials, edge deletion and contraction algorithms, NP-hard problems.

1 Document citing this article

Consultation statistics

This page has been seen 368 times.
This article's PDF has been downloaded 760 times.