Federico Ardila ; Florian Block - Universal Polynomials for Severi Degrees of Toric Surfaces

dmtcs:3089 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3089
Universal Polynomials for Severi Degrees of Toric SurfacesArticle

Authors: Federico Ardila 1; Florian Block 2

  • 1 Department of Mathematics [San Francisco]
  • 2 Warwick Mathematics Institute

The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: Enumerative geometry, toric surfaces, Gromov-Witten theory, Severi degrees, node polynomials,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • CAREER: Matroids, polytopes, and their valuations in algebra and geometry; Funder: National Science Foundation; Code: 0956178
  • Combinatorics in Geometry; Funder: National Science Foundation; Code: 0801075

11 Documents citing this article

Consultation statistics

This page has been seen 310 times.
This article's PDF has been downloaded 438 times.