Federico Ardila ; Florian Block - Universal Polynomials for Severi Degrees of Toric Surfaces

dmtcs:3089 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3089
Universal Polynomials for Severi Degrees of Toric SurfacesConference paper

Authors: Federico Ardila 1; Florian Block 2

  • 1 Department of Mathematics [San Francisco]
  • 2 Warwick Mathematics Institute

[en]
The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope.

[fr]
La variété de Severi paramétrise les courbes planes de degré $d$ avec $\delta$ nœuds. Son degré s'appelle le degré de Severi. Pour $d$ assez grand, les degrés de Severi coïncident avec les invariants de Gromov-Witten de $\mathbb{CP}^2$. Fomin et Mikhalkin (2009) ont prouvé une conjecture de 1995 que pour $\delta$ fixé, les degrés de Severi sont à terme des polynômes en $d$. Nous étudions les variétés de Severi correspondant à une large famille de surfaces toriques. Nous prouvons le résultat analogue que les degrés de Severi sont à terme des fonctions polynomiales du multidegré. De manière plus surprenante, nous montrons que les degrés de Severi sont à terme des polynômes en tant que "fonction de la surface''. Notre stratégie est d'utiliser la géométrie tropicale pour exprimer les degrés de Severi en fonction des "floor diagrams" de Brugallé et Mikhalkin, et d'utiliser ces objets combinatoires en détail. Un autre ingrédient important de la preuve est la polynomialité du volume discret d'un polytope face-unimodulaire variable.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Enumerative geometry, toric surfaces, Gromov-Witten theory, Severi degrees, node polynomials
Funding:
    Source : OpenAIRE Graph
  • Combinatorics in Geometry; Funder: National Science Foundation; Code: 0801075
  • CAREER: Matroids, polytopes, and their valuations in algebra and geometry; Funder: National Science Foundation; Code: 0956178

13 Documents citing this article

Consultation statistics

This page has been seen 417 times.
This article's PDF has been downloaded 552 times.