Ardila, Federico and Doker, Jeffrey - Lifted generalized permutahedra and composition polynomials

dmtcs:3094 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Lifted generalized permutahedra and composition polynomials

Authors: Ardila, Federico and Doker, Jeffrey

We introduce a "lifting'' construction for generalized permutohedra, which turns an $n$-dimensional generalized permutahedron into an $(n+1)$-dimensional one. We prove that this construction gives rise to Stasheff's multiplihedron from homotopy theory, and to the more general "nestomultiplihedra,'' answering two questions of Devadoss and Forcey. We construct a subdivision of any lifted generalized permutahedron whose pieces are indexed by compositions. The volume of each piece is given by a polynomial whose combinatorial properties we investigate. We show how this "composition polynomial'' arises naturally in the polynomial interpolation of an exponential function. We prove that its coefficients are positive integers, and conjecture that they are unimodal.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Submitted on: January 31, 2017
Keywords: permutohedron, associahedron, multiplihedron, nestohedron, subdivision, composition polynomial, polynomial interpolation,Polytope,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]


Share

Consultation statistics

This page has been seen 98 times.
This article's PDF has been downloaded 303 times.