Jeffrey Remmel ; Mark Tiefenbruck - Extending from bijections between marked occurrences of patterns to all occurrences of patterns

dmtcs:3098 - Discrete Mathematics & Theoretical Computer Science, January 1, 2012, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) - https://doi.org/10.46298/dmtcs.3098
Extending from bijections between marked occurrences of patterns to all occurrences of patternsConference paper

Authors: Jeffrey Remmel 1; Mark Tiefenbruck 1

  • 1 Department of Mathematics [Univ California San Diego]

[en]
We consider two recent open problems stating that certain statistics on various sets of combinatorial objects are equidistributed. The first, posed by Anders Claesson and Svante Linusson, relates nestings in matchings on $\{1,2,\ldots,2n\}$ to occurrences of a certain pattern in permutations in $S_n$. The second, posed by Miles Jones and Jeffrey Remmel, relates occurrences of a large class of consecutive permutation patterns to occurrences of the same pattern in the cycles of permutations. We develop a general method that solves both of these problems and many more. We further employ the Garsia-Milne involution principle to obtain purely bijective proofs of these results.

[fr]
Nous considérons deux derniers problèmes ouverts indiquant que certaines statistiques sur les divers ensembles d'objets combinatoires sont équiréparties. La première, posée par Anders Claesson et Svante Linusson, concerne les imbrications dans des filtrages sur $\{1,2,\ldots,2n\}$ pour les occurrences d'un certain modèle de permutations dans $S_n$. La seconde, posée par Miles Jones et Jeffrey Remmel, concerne les occurrences d'une large classe de schémas de permutation consécutive aux évènements du même modèle dans les cycles de permutations. Nous développons une méthode générale qui résout ces deux problèmes et beaucoup plus. Nous avons également utiliser le principe d'involution Garsia-Milne pour obtenir des preuves purement bijectives de ces résultats.


Volume: DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
Section: Proceedings
Published on: January 1, 2012
Imported on: January 31, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] bijection, permutation statistics, generating function, partially marked pattern family

Consultation statistics

This page has been seen 386 times.
This article's PDF has been downloaded 367 times.