Discrete Mathematics & Theoretical Computer Science |

- 1 College of Computing

Given $\epsilon _i ∈ [0,1)$ for each $1 < i < n$, a particle performs the following random walk on $\{1,2,...,n\:\}$par If the particle is at $n$, it chooses a point uniformly at random (u.a.r.) from $\{1,...,n-1\}$. If the current position of the particle is $m (1 < m < n)$, with probability $\epsilon _m$ it decides to go back, in which case it chooses a point u.a.r. from $\{m+1,...,n\}$. With probability $1-\epsilon _m$ it decides to go forward, in which case it chooses a point u.a.r. from $\{1,...,m-1\}$. The particle moves to the selected point. What is the expected time taken by the particle to reach 1 if it starts the walk at $n$? Apart from being a natural variant of the classical one dimensional random walk, variants and special cases of this problemarise in Theoretical Computer Science [Linial, Fagin, Karp, Vishnoi]. In this paper we study this problem and observe interesting properties of this walk. First we show that the expected number of times the particle visits $i$ (before getting absorbed at 1) is the same when the walk is started at $j$, for all $j > i$. Then we show that for the following parameterized family of $\epsilon 's: \epsilon _i = \frac{n-i}{n-i+ α · (i-1)}$,$1 < i < n$ where $α$ does not depend on $i$, the expected number of times the particle visits $i$ is the same when the walk is started at $j$, for all $j < i$. Using these observations we obtain the expected absorption time for this family of $\epsilon 's$. As $α$ varies from infinity to 1, this time goes from $Θ (log n) to Θ (n)$. Finally we studythe behavior of the expected convergence timeas a function of $\epsilon$ . It remains an open question to determine whether this quantity increases when all $\epsilon 's$ are increased. We give some preliminary results to this effect.

Source: HAL:hal-01183925v1

Volume: DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03)

Section: Proceedings

Published on: January 1, 2003

Imported on: May 10, 2017

Keywords: Non uniform random walk,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

This page has been seen 270 times.

This article's PDF has been downloaded 353 times.