Valentin Topchii ; Vladimir Vatutin - Individuals at the origin in the critical catalytic branching random walk

dmtcs:3331 - Discrete Mathematics & Theoretical Computer Science, January 1, 2003, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03) - https://doi.org/10.46298/dmtcs.3331
Individuals at the origin in the critical catalytic branching random walkConference paper

Authors: Valentin Topchii 1; Vladimir Vatutin 2


A continuous time branching random walk on the lattice $\mathbb{Z}$ is considered in which individuals may produce children at the origin only. Assuming that the underlying random walk is symmetric and the offspring reproduction law is critical we prove a conditional limit theorem for the number of individuals at the origin.


Volume: DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03)
Section: Proceedings
Published on: January 1, 2003
Imported on: May 10, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], [en] catalytic branching random walk, critical two-dimensional Bellman-Harris process

1 Document citing this article

Consultation statistics

This page has been seen 380 times.
This article's PDF has been downloaded 559 times.