Position of the maximum in a sequence with geometric distributionConference paper
Authors: Margaret Archibald 1
NULL
Margaret Archibald
- 1 The John Knopfmacher Centre for Applicable Analysis and Number Theory [Johannesburg]
As a sequel to [arch04], the position of the maximum in a geometrically distributed sample is investigated. Samples of length n are considered, where the maximum is required to be in the first d positions. The probability that the maximum occurs in the first $d$ positions is sought for $d$ dependent on n (as opposed to d fixed in [arch04]). Two scenarios are discussed. The first is when $d=αn$ for $0 < α ≤ 1$, where Mellin transforms are used to obtain the asymptotic results. The second is when $1 ≤ d = o(n)$.
Volume: DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], [INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC], [en] Mellin transforms, generating functions, geometric distribution.