Laszlo Gyorfi ; Sándor Gyori
-
Analysis of tree algorithm for collision resolution
dmtcs:3376 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
-
https://doi.org/10.46298/dmtcs.3376
Analysis of tree algorithm for collision resolutionArticle
Authors: Laszlo Gyorfi 1; Sándor Gyori 1
NULL##NULL
Laszlo Gyorfi;Sándor Gyori
1 Department of Computer Science and Information Theory
For the tree algorithm introduced by [Cap79] and [TsMi78] let $L_N$ denote the expected collision resolution time given the collision multiplicity $N$. If $L(z)$ stands for the Poisson transform of $L_N$, then we show that $L_N - L(N) ≃ 1.29·10^-4 \cos (2 π \log _2 N + 0.698)$.
Sergey Andreev;Eugeny Pustovalov;Andrey Turlikov, Lecture notes in computer science, A Practical Tree Algorithm with Successive Interference Cancellation for Delay Reduction in IEEE 802.16 Networks, pp. 301-315, 2011, 10.1007/978-3-642-21713-5_22.
S. D. Andreev;E. M. Pustovalov;A. M. Tyurlikov, 2009, Conflict-resolving tree algorithm stable to incomplete interference damping, Automation and Remote Control, 70, 3, pp. 417-433, 10.1134/s0005117909030084.