Laszlo Gyorfi ; Sándor Gyori
-
Analysis of tree algorithm for collision resolution
dmtcs:3376 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
-
https://doi.org/10.46298/dmtcs.3376
Analysis of tree algorithm for collision resolution
Authors: Laszlo Gyorfi 1; Sándor Gyori 1
NULL##NULL
Laszlo Gyorfi;Sándor Gyori
1 Department of Computer Science and Information Theory
For the tree algorithm introduced by [Cap79] and [TsMi78] let $L_N$ denote the expected collision resolution time given the collision multiplicity $N$. If $L(z)$ stands for the Poisson transform of $L_N$, then we show that $L_N - L(N) ≃ 1.29·10^-4 \cos (2 π \log _2 N + 0.698)$.
Andreev, Sergey; Pustovalov, E. M.; Tyurlikov, A. M., 2009, Conflict-resolving Tree Algorithm Stable To Incomplete Interference Damping, Automation And Remote Control, 70, 3, pp. 417-433, 10.1134/s0005117909030084.
Andreev, Sergey; Pustovalov, Eugeny; Turlikov, Andrey, 2011, A Practical Tree Algorithm With Successive Interference Cancellation For Delay Reduction In IEEE 802.16 Networks, Analytical And Stochastic Modeling Techniques And Applications, pp. 301-315, 10.1007/978-3-642-21713-5_22.