Laszlo Gyorfi ; Sándor Gyori
-
Analysis of tree algorithm for collision resolution
dmtcs:3376 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
-
https://doi.org/10.46298/dmtcs.3376Analysis of tree algorithm for collision resolutionConference paper
Authors: Laszlo Gyorfi 1; Sándor Gyori 1
NULL##NULL
Laszlo Gyorfi;Sándor Gyori
- 1 Department of Computer Science and Information Theory
For the tree algorithm introduced by [Cap79] and [TsMi78] let $L_N$ denote the expected collision resolution time given the collision multiplicity $N$. If $L(z)$ stands for the Poisson transform of $L_N$, then we show that $L_N - L(N) ≃ 1.29·10^-4 \cos (2 π \log _2 N + 0.698)$.
Volume: DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG], [en] random access communication, collision resolution time, tree algorithm