Charlotte Brennan ; Arnold Knopfmacher
-
The distribution of ascents of size $d$ or more in samples of geometric random variables
dmtcs:3382 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
-
https://doi.org/10.46298/dmtcs.3382
The distribution of ascents of size $d$ or more in samples of geometric random variablesArticle
Authors: Charlotte Brennan 1; Arnold Knopfmacher 1
NULL##NULL
Charlotte Brennan;Arnold Knopfmacher
1 The John Knopfmacher Centre for Applicable Analysis and Number Theory [Johannesburg]
We consider words or strings of characters $a_1a_2a_3 \ldots a_n$ of length $n$, where the letters $a_i \in \mathbb{Z}$ are independently generated with a geometric probability $\mathbb{P} \{ X=k \} = pq^{k-1}$ where $p+q=1$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more if $a_{i+1} \geq a_i+d$. We determine the mean, variance and limiting distribution of the number of ascents of size $d$ or more in a random geometrically distributed word.