Márton Makai - Matroid matching with Dilworth truncation

dmtcs:3393 - Discrete Mathematics & Theoretical Computer Science, January 1, 2005, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) - https://doi.org/10.46298/dmtcs.3393
Matroid matching with Dilworth truncationArticle

Authors: Márton Makai 1

  • 1 Operations Research Department

Let $H=(V,E)$ be a hypergraph and let $k≥ 1$ and$ l≥ 0$ be fixed integers. Let $\mathcal{M}$ be the matroid with ground-set $E s.t. a$ set $F⊆E$ is independent if and only if each $X⊆V$ with $k|X|-l≥ 0$ spans at most $k|X|-l$ hyperedges of $F$. We prove that if $H$ is dense enough, then $\mathcal{M}$ satisfies the double circuit property, thus the min-max formula of Dress and Lovász on the maximum matroid matching holds for $\mathcal{M}$ . Our result implies the Berge-Tutte formula on the maximum matching of graphs $(k=1, l=0)$, generalizes Lovász' graphic matroid (cycle matroid) matching formula to hypergraphs $(k=l=1)$ and gives a min-max formula for the maximum matroid matching in the 2-dimensional rigidity matroid $(k=2, l=3)$.


Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: matroid matching,Dilworth truncation,double circuit property,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

1 Document citing this article

Consultation statistics

This page has been seen 204 times.
This article's PDF has been downloaded 356 times.