Christian Bey
-
Quadratic LYM-type inequalities for intersecting Sperner families
dmtcs:3418 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3418Quadratic LYM-type inequalities for intersecting Sperner familiesConference paper
Authors: Christian Bey 1
NULL
Christian Bey
- 1 Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg]
Let $\mathcal{F}\subseteq 2^{[n]}$ be a intersecting Sperner family (i.e. $A \not\subset B, A \cap B \neq \emptyset$ for all $A,B \in \mathcal{F}$) with profile vector $(f_i)_{i=0 \ldots n}$ (i.e. $f_i=|\mathcal{F} \cap \binom{[n]}{i}|$). We present quadratic inequalities in the $f_i$'s which sharpen the previously known linear $\mathrm{LYM}$-type inequalities.
Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC], [en] Sperner family, antichain, $\mathrm{LYM}$ inequality