Christian Bey
-
Quadratic LYM-type inequalities for intersecting Sperner families
dmtcs:3418 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3418
Quadratic LYM-type inequalities for intersecting Sperner familiesArticle
Authors: Christian Bey 1
NULL
Christian Bey
1 Otto-von-Guericke-Universität Magdeburg = Otto-von-Guericke University [Magdeburg]
Let $\mathcal{F}\subseteq 2^{[n]}$ be a intersecting Sperner family (i.e. $A \not\subset B, A \cap B \neq \emptyset$ for all $A,B \in \mathcal{F}$) with profile vector $(f_i)_{i=0 \ldots n}$ (i.e. $f_i=|\mathcal{F} \cap \binom{[n]}{i}|$). We present quadratic inequalities in the $f_i$'s which sharpen the previously known linear $\mathrm{LYM}$-type inequalities.
Tran Dan Thu, 2013, On Local LYM Identities, Annals of Combinatorics, 17, 4, pp. 755-763, 10.1007/s00026-013-0205-6.
Tran Dan Thu, 2011, On Half-Way AZ-Style Identities, Graphs and Combinatorics, 28, 3, pp. 423-432, 10.1007/s00373-011-1046-x.
Tran Dan Thu, 2007, An AZ-style identity and Bollobás deficiency, Journal of Combinatorial Theory Series A, 114, 8, pp. 1504-1514, 10.1016/j.jcta.2007.03.005.