Isolde Adler ; Georg Gottlob ; Martin Grohe
-
Hypertree-Width and Related Hypergraph Invariants
dmtcs:3424 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3424Hypertree-Width and Related Hypergraph InvariantsConference paperAuthors: Isolde Adler
1; Georg Gottlob
2; Martin Grohe
3
NULL##0000-0002-2353-5230##0000-0002-0292-9142
Isolde Adler;Georg Gottlob;Martin Grohe
- 1 Mathematisches Institut, Abteilung für Mathematische Logik
- 2 Institut für Informationssysteme [Wien]
- 3 Institut fur Informatik
We study the notion of hypertree-width of hypergraphs. We prove that, up to a constant factor, hypertree-width is the same as a number of other hypergraph invariants that resemble graph invariants such as bramble-number, branch-width, linkedness, and the minimum number of cops required to win Seymour and Thomas's robber and cops game.
Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] hypergraphs, tree decompositions, hypertree width
Funding:
Source : OpenAIRE Graph- Complementary Approaches to Constraint Satisfaction; Code: P 17222