Louis Esperet ; Mickael Montassier ; André Raspaud
-
Linear choosability of graphs
dmtcs:3434 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3434Linear choosability of graphsConference paperAuthors: Louis Esperet
1; Mickael Montassier
1; André Raspaud
1
0000-0001-6200-0514##NULL##NULL
Louis Esperet;Mickael Montassier;André Raspaud
A proper vertex coloring of a non oriented graph $G=(V,E)$ is linear if the graph induced by the vertices of two color classes is a forest of paths. A graph $G$ is $L$-list colorable if for a given list assignment $L=\{L(v): v∈V\}$, there exists a proper coloring $c$ of $G$ such that $c(v)∈L(v)$ for all $v∈V$. If $G$ is $L$-list colorable for every list assignment with $|L(v)|≥k$ for all $v∈V$, then $G$ is said $k$-choosable. A graph is said to be lineary $k$-choosable if the coloring obtained is linear. In this paper, we investigate the linear choosability of graphs for some families of graphs: graphs with small maximum degree, with given maximum average degree, planar graphs... Moreover, we prove that determining whether a bipartite subcubic planar graph is lineary 3-colorable is an NP-complete problem.
Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] vertex-coloring, list, acyclic, 3-frugal, choosability under constraints.