Joshua Cooper ; Benjamin Doerr ; Joel Spencer ; Gábor Tardos
-
Deterministic Random Walks on the Integers
dmtcs:3436 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3436Deterministic Random Walks on the IntegersConference paperAuthors: Joshua Cooper
1; Benjamin Doerr
2; Joel Spencer
1; Gábor Tardos
3
0000-0001-5187-1322##0000-0002-9786-220X##NULL##0000-0002-4281-1843
Joshua Cooper;Benjamin Doerr;Joel Spencer;Gábor Tardos
- 1 Courant Institute of Mathematical Sciences [New York]
- 2 Max-Planck-Institut für Informatik
- 3 Alfréd Rényi Institute of Mathematics
We analyze the one-dimensional version of Jim Propp's $P$-machine, a simple deterministic process that simulates a random walk on $\mathbb{Z}$. The "output'' of the machine is astonishingly close to the expected behavior of a random walk, even on long intervals of space and time.
Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] random walks, chip firing games.
Funding:
Source : OpenAIRE Graph- PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0303272