Jun Tarui - On the Minimum Number of Completely 3-Scrambling Permutations

dmtcs:3443 - Discrete Mathematics & Theoretical Computer Science, January 1, 2005, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) - https://doi.org/10.46298/dmtcs.3443
On the Minimum Number of Completely 3-Scrambling PermutationsArticle

Authors: Jun Tarui 1

  • 1 Department of Information and Communication Engineering [Tokyo]

A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible orders on $\pi_i (x_1),\ldots, \pi_i(x_k)$. Let $N^{\ast}(n,k)$ be the minimum size of such a family. This paper focuses on the case $k=3$. By a simple explicit construction, we show the following upper bound, which we express together with the lower bound due to Füredi for comparison. $\frac{2}{ \log _2e} \log_2 n \leq N^{\ast}(n,3) \leq 2\log_2n + (1+o(1)) \log_2 \log _2n$. We also prove the existence of $\lim_{n \to \infty} N^{\ast}(n,3) / \log_2 n = c_3$. Determining the value $c_3$ and proving the existence of $\lim_{n \to \infty} N^{\ast}(n,k) / \log_2 n = c_k$ for $k \geq 4$ remain open.


Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: completely scrambling permutations,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

9 Documents citing this article

Consultation statistics

This page has been seen 191 times.
This article's PDF has been downloaded 209 times.