Gill Barequet ; Micha Moffie ; Ares Ribó ; Günter Rote
-
Counting Polyominoes on Twisted Cylinders
dmtcs:3446 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3446Counting Polyominoes on Twisted CylindersConference paperAuthors: Gill Barequet
1; Micha Moffie
1; Ares Ribó
2; Günter Rote
2
NULL##NULL##NULL##0000-0002-0351-5945
Gill Barequet;Micha Moffie;Ares Ribó;Günter Rote
- 1 Department of Computer Science [Haifa]
- 2 Institut für Informatik [Berlin]
We improve the lower bounds on Klarner's constant, which describes the exponential growth rate of the number of polyominoes (connected subsets of grid squares) with a given number of squares. We achieve this by analyzing polyominoes on a different surface, a so-called $\textit{twisted cylinder}$ by the transfer matrix method. A bijective representation of the "states'' of partial solutions is crucial for allowing a compact representation of the successive iteration vectors for the transfer matrix method.
Volume: DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
Section: Proceedings
Published on: January 1, 2005
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] polyomino, combinatorial counting