Ross M. Richardson ; Van H. Vu ; Lei Wu
-
Random Inscribing Polytopes
dmtcs:3459 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2005,
DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
-
https://doi.org/10.46298/dmtcs.3459
Random Inscribing PolytopesArticle
Authors: Ross M. Richardson 1; Van H. Vu ; Lei Wu 1
NULL##NULL##NULL
Ross M. Richardson;Van H. Vu;Lei Wu
1 Department of Mathematics [Univ California San Diego]
For convex bodies $K$ with $\mathcal{C}^2$ boundary in $\mathbb{R}^d$, we provide results on the volume of random polytopes with vertices chosen along the boundary of $K$ which we call $\textit{random inscribing polytopes}$. In particular, we prove results concerning the variance and higher moments of the volume, as well as show that the random inscribing polytopes generated by the Poisson process satisfy central limit theorem.
Siva Athreya;Purvi Gupta;D. Yogeshwaran, 2023, Volume approximation of strongly C-convex domains by random polyhedra, Advances in Mathematics, 432, pp. 109243, 10.1016/j.aim.2023.109243.
Pavlos Kotidis;Panagiotis Demis;Cher H. Goey;Elisa Correa;Calum McIntosh;et al., 2019, Constrained global sensitivity analysis for bioprocess design space identification, Spiral (Imperial College London), 125, pp. 558-568, 10.1016/j.compchemeng.2019.01.022, http://hdl.handle.net/10044/1/66121.
Christoph Thäle, 2017, Central Limit Theorem for the Volume of Random Polytopes with Vertices on the Boundary, Discrete & Computational Geometry, 59, 4, pp. 990-1000, 10.1007/s00454-017-9862-2.