I. Fanti ; A. Frosini ; E. Grazzini ; R. Pinzani ; S. Rinaldi
-
Polyominoes determined by permutations
dmtcs:3478 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3478
Polyominoes determined by permutations
Authors: I. Fanti 1; A. Frosini 2; E. Grazzini 1; R. Pinzani 1; S. Rinaldi 2
NULL##NULL##NULL##NULL##NULL
I. Fanti;A. Frosini;E. Grazzini;R. Pinzani;S. Rinaldi
1 Dipartimento di Sistemi e Informatica
2 Department of Mathematics and Computer Science / Dipartimento di Scienze Matematiche e Informatiche "Roberto Magari"
In this paper we consider the class of $\textit{permutominoes}$, i.e. a special class of polyominoes which are determined by a pair of permutations having the same size. We give a characterization of the permutations associated with convex permutominoes, and then we enumerate various classes of convex permutominoes, including parallelogram, directed-convex, and stack ones.
Aleksandrowicz, Gadi; Asinowski, Andrei; Barequet, Gill, 2013, Permutations With Forbidden Patterns And Polyominoes On A Twisted Cylinder Of Width 3, Discrete Mathematics, 313, 10, pp. 1078-1086, 10.1016/j.disc.2013.01.028.
Boldi, Paolo; Lonati, Violetta, 0000-0002-4722-244; Radicioni, Roberto; Santini, Massimo, 2008, The Number Of Convex Permutominoes, Information And Computation, 206, 9-10, pp. 1074-1083, 10.1016/j.ic.2008.03.009.