Discrete Mathematics & Theoretical Computer Science |
Let $S$ be a set of $d$-dimensional row vectors with entries in a $q$-ary alphabet. A matrix $M$ with entries in the same $q$-ary alphabet is $S$-constrained if every set of $d$ columns of $M$ contains as a submatrix a copy of the vectors in $S$, up to permutation. For a given set $S$ of $d$-dimensional vectors, we compute the asymptotic probability for a random matrix $M$ to be $S$-constrained, as the numbers of rows and columns both tend to infinity. If $n$ is the number of columns and $m=m_n$ the number of rows, then the threshold is at $m_n= \alpha_d \log (n)$, where $\alpha_d$ only depends on the dimension $d$ of vectors and not on the particular set $S$. Applications to superimposed codes, shattering classes of functions, and Sidon families of sets are proposed. For $d=2$, an explicit construction of a $S$-constrained matrix is given.