Grégory Miermont
-
An invariance principle for random planar maps
dmtcs:3505 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3505
An invariance principle for random planar mapsArticle
Authors: Grégory Miermont 1
NULL
Grégory Miermont
1 Laboratoire de Mathématiques d'Orsay
We show a new invariance principle for the radius and other functionals of a class of conditioned `Boltzmann-Gibbs'-distributed random planar maps. It improves over the more restrictive case of bipartite maps that was discussed in Marckert and Miermont (2006). As in the latter paper, we make use of a bijection between planar maps and a class of labelled multitype trees, due to Bouttier et al. (2004). We also rely on an invariance principle for multitype spatial Galton-Watson trees, which is proved in a companion paper.
Louigi Addario-Berry;Marie Albenque, 2021, Convergence of non-bipartite maps via symmetrization of labeled trees, Annales Henri Lebesgue, 4, pp. 653-683, 10.5802/ahl.84, https://doi.org/10.5802/ahl.84.
Robin Stephenson, 2016, Local Convergence of Large Critical Multi-type Galton–Watson Trees and Applications to Random Maps, arXiv (Cornell University), 31, 1, pp. 159-205, 10.1007/s10959-016-0707-3, https://arxiv.org/abs/1412.6911.
Timothy Budd, 2016, The Peeling Process of Infinite Boltzmann Planar Maps, The Electronic Journal of Combinatorics, 23, 1, 10.37236/5428, https://doi.org/10.37236/5428.
Jérémie Bettinelli;Emmanuel Jacob;Grégory Miermont, 2014, The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection, Electronic Journal of Probability, 19, none, 10.1214/ejp.v19-3213, https://doi.org/10.1214/ejp.v19-3213.
Nicolas Curien;Jean-François Le Gall;Grégory Miermont, 2013, The Brownian cactus I. Scaling limits of discrete cactuses, Annales de l Institut Henri Poincaré Probabilités et Statistiques, 49, 2, 10.1214/11-aihp460, https://doi.org/10.1214/11-aihp460.
Grégory Miermont, Progress in probability, Random Maps and Their Scaling Limits, pp. 197-224, 2009, 10.1007/978-3-0346-0030-9_7.
Grégory Miermont, 2008, Invariance principles for spatial multitype Galton–Watson trees, Annales de l Institut Henri Poincaré Probabilités et Statistiques, 44, 6, 10.1214/07-aihp157, https://doi.org/10.1214/07-aihp157.
Jean-François Le Gall, 2008, The continuous limit of large random planar maps, Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AI,..., Proceedings, 10.46298/dmtcs.3554, https://doi.org/10.46298/dmtcs.3554.