Grégory Miermont
-
An invariance principle for random planar maps
dmtcs:3505 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3505An invariance principle for random planar mapsConference paper
Authors: Grégory Miermont 1
NULL
Grégory Miermont
- 1 Laboratoire de Mathématiques d'Orsay
We show a new invariance principle for the radius and other functionals of a class of conditioned `Boltzmann-Gibbs'-distributed random planar maps. It improves over the more restrictive case of bipartite maps that was discussed in Marckert and Miermont (2006). As in the latter paper, we make use of a bijection between planar maps and a class of labelled multitype trees, due to Bouttier et al. (2004). We also rely on an invariance principle for multitype spatial Galton-Watson trees, which is proved in a companion paper.
Volume: DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
Section: Proceedings
Published on: January 1, 2006
Imported on: May 10, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] Random planar map, invariance principle, multitype spatial Galton-Watson tree, Brownian snake