Charlotte Brennan ; Arnold Knopfmacher
-
The first ascent of size $d$ or more in compositions
dmtcs:3509 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3509
The first ascent of size $d$ or more in compositionsArticle
Authors: Charlotte Brennan 1; Arnold Knopfmacher 1
NULL##NULL
Charlotte Brennan;Arnold Knopfmacher
1 The John Knopfmacher Centre for Applicable Analysis and Number Theory [Johannesburg]
A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average position, initial height and end height of the first ascent of size $d$ or more in compositions of $n$ as $n \to \infty$.