Charlotte Brennan ; Arnold Knopfmacher
-
The first ascent of size d or more in compositions
dmtcs:3509 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3509
The first ascent of size d or more in compositionsConference paper
Authors: Charlotte Brennan 1; Arnold Knopfmacher 1
NULL##NULL
Charlotte Brennan;Arnold Knopfmacher
1 The John Knopfmacher Centre for Applicable Analysis and Number Theory [Johannesburg]
A composition of a positive integer n is a finite sequence of positive integers a1,a2,…,ak such that a1+a2+⋯+ak=n. Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more at position i, if ai+1≥ai+d. We study the average position, initial height and end height of the first ascent of size d or more in compositions of n as n→∞.