Florent Hivert ; Jean-Christophe Novelli ; Jean-Yves Thibon
-
Multivariate generalizations of the Foata-Schützenberger equidistribution
dmtcs:3511 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3511Multivariate generalizations of the Foata-Schützenberger equidistributionConference paperAuthors: Florent Hivert
1; Jean-Christophe Novelli
2; Jean-Yves Thibon
2
0000-0002-7531-5985##NULL##0000-0002-8976-4044
Florent Hivert;Jean-Christophe Novelli;Jean-Yves Thibon
A result of Foata and Schützenberger states that two statistics on permutations, the number of inversions and the inverse major index, have the same distribution on a descent class. We give a multivariate generalization of this property: the sorted vectors of the Lehmer code, of the inverse majcode, and of a new code (the inverse saillance code), have the same distribution on a descent class, and their common multivariate generating function is a flagged ribbon Schur function.
Volume: DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
Section: Proceedings
Published on: January 1, 2006
Imported on: May 10, 2017
Keywords: [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] permutation, inversion, descent
Funding:
Source : HAL- Algèbres de Hopf combinatoires, opérades et props; Funder: French National Research Agency (ANR); Code: ANR-06-BLAN-0380