Louigi Addario-Berry ; Nicolas Broutin ; Bruce Reed
-
The Diameter of the Minimum Spanning Tree of a Complete Graph
dmtcs:3513 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3513
The Diameter of the Minimum Spanning Tree of a Complete GraphArticle
Authors: Louigi Addario-Berry ; Nicolas Broutin ; Bruce Reed
NULL##NULL##NULL
Louigi Addario-Berry;Nicolas Broutin;Bruce Reed
Let $X_1,\ldots,X_{n\choose 2}$ be independent identically distributed weights for the edges of $K_n$. If $X_i \neq X_j$ for$ i \neq j$, then there exists a unique minimum weight spanning tree $T$ of $K_n$ with these edge weights. We show that the expected diameter of $T$ is $Θ (n^{1/3})$. This settles a question of [Frieze97].
Shankar Bhamidi;Remco van der Hofstad, 2012, Weak disorder asymptotics in the stochastic mean-field model of distance, The Annals of Applied Probability, 22, 1, 10.1214/10-aap753, https://doi.org/10.1214/10-aap753.
Tobias Friedrich;Nils Hebbinghaus, Lecture notes in computer science, Average Update Times for Fully-Dynamic All-Pairs Shortest Paths, pp. 692-703, 2008, 10.1007/978-3-540-92182-0_61.