Louigi Addario-Berry ; Nicolas Broutin ; Bruce Reed
-
The Diameter of the Minimum Spanning Tree of a Complete Graph
dmtcs:3513 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2006,
DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
-
https://doi.org/10.46298/dmtcs.3513
The Diameter of the Minimum Spanning Tree of a Complete Graph
Authors: Louigi Addario-Berry ; Nicolas Broutin ; Bruce Reed
NULL##NULL##NULL
Louigi Addario-Berry;Nicolas Broutin;Bruce Reed
Let $X_1,\ldots,X_{n\choose 2}$ be independent identically distributed weights for the edges of $K_n$. If $X_i \neq X_j$ for$ i \neq j$, then there exists a unique minimum weight spanning tree $T$ of $K_n$ with these edge weights. We show that the expected diameter of $T$ is $Θ (n^{1/3})$. This settles a question of [Frieze97].
Addario-Berry, L.; Broutin, N.; Goldschmidt, Christina, 2010, The Continuum Limit Of Critical Random Graphs, Probability Theory And Related Fields, 152, 3-4, pp. 367-406, 10.1007/s00440-010-0325-4.
Bhamidi, Shankar; Van Der Hofstad, Remco, 2012, Weak Disorder Asymptotics In The Stochastic Mean-Field Model Of Distance, The Annals Of Applied Probability, 22, 1, 10.1214/10-aap753.
Friedrich, Tobias; Hebbinghaus, Nils, 2008, Average Update Times For Fully-Dynamic All-Pairs Shortest Paths, Algorithms And Computation, pp. 692-703, 10.1007/978-3-540-92182-0_61.
Yang, Mengta; Modarres, Reza; Guo, Lingzhe, 2019, Depth Functions And Mutidimensional Medians On Minimal Spanning Trees, Journal Of Applied Statistics, 47, 2, pp. 323-336, 10.1080/02664763.2019.1636939.