Helmut Prodinger ; Stephan Wagner - Minimal and maximal plateau lengths in Motzkin paths

dmtcs:3520 - Discrete Mathematics & Theoretical Computer Science, January 1, 2007, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07) - https://doi.org/10.46298/dmtcs.3520
Minimal and maximal plateau lengths in Motzkin pathsArticle

Authors: Helmut Prodinger 1; Stephan Wagner 1

  • 1 Department of Mathematical Sciences [Matieland, Stellenbosch Uni.]

The minimal length of a plateau (a sequence of horizontal steps, preceded by an up- and followed by a down-step) in a Motzkin path is known to be of interest in the study of secondary structures which in turn appear in mathematical biology. We will treat this and the related parameters <i> maximal plateau length, horizontal segment </i>and <i>maximal horizontal segment </i>as well as some similar parameters in unary-binary trees by a pure generating functions approach―-Motzkin paths are derived from Dyck paths by a substitution process. Furthermore, we provide a pretty general analytic method to obtain means and limiting distributions for these parameters. It turns out that the maximal plateau and the maximal horizontal segment follow a Gumbel distribution.


Volume: DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)
Section: Proceedings
Published on: January 1, 2007
Imported on: May 10, 2017
Keywords: Gumbel distribution,unary-binary trees,Motzkin paths,singularity analysis,Mellin transform,bootstrapping,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

2 Documents citing this article

Consultation statistics

This page has been seen 297 times.
This article's PDF has been downloaded 220 times.