Andrew Bressler ; Robin Pemantle
-
Quantum random walks in one dimension via generating functions
dmtcs:3533 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2007,
DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)
-
https://doi.org/10.46298/dmtcs.3533
Quantum random walks in one dimension via generating functionsArticle
Authors: Andrew Bressler 1; Robin Pemantle 1
NULL##NULL
Andrew Bressler;Robin Pemantle
1 Department of Mathematics [Philadelphia]
We analyze nearest neighbor one-dimensional quantum random walks with arbitrary unitary coin-flip matrices. Using a multivariate generating function analysis we give a simplified proof of a known phenomenon, namely that the walk has linear speed rather than the diffusive behavior observed in classical random walks. We also obtain exact formulae for the leading asymptotic term of the wave function and the location probabilities.
Stephen Melczer, Texts & monographs in symbolic computation/Texts and monographs in symbolic computation, Multiple Points and Beyond, pp. 351-385, 2020, 10.1007/978-3-030-67080-1_9.
A. Ahlbrecht;H. Vogts;A. H. Werner;R. F. Werner, 2011, Asymptotic evolution of quantum walks with random coin, arXiv (Cornell University), 52, 4, 10.1063/1.3575568, https://arxiv.org/abs/1009.2019.
M. J. Cantero;L. Moral;F. Alberto Grünbaum;L. Velázquez, 2009, Matrix‐valued Szegő polynomials and quantum random walks, Communications on Pure and Applied Mathematics, 63, 4, pp. 464-507, 10.1002/cpa.20312.