Daniel Berend ; Steven S. Skiena ; Yochai Twitto - Combinatorial Dominance Guarantees for Heuristic Algorithms

dmtcs:3537 - Discrete Mathematics & Theoretical Computer Science, January 1, 2007, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07) - https://doi.org/10.46298/dmtcs.3537
Combinatorial Dominance Guarantees for Heuristic AlgorithmsArticle

Authors: Daniel Berend 1,2; Steven S. Skiena 3; Yochai Twitto 2

  • 1 Department of Mathematics [Be'er Sheva]
  • 2 Department of Computer Science [Beer-Sheva]
  • 3 Computer Science Department [SUNY]

An $f(n)$ $\textit{dominance bound}$ on a heuristic for some problem is a guarantee that the heuristic always returns a solution not worse than at least $f(n)$ solutions. In this paper, we analyze several heuristics for $\textit{Vertex Cover}$, $\textit{Set Cover}$, and $\textit{Knapsack}$ for dominance bounds. In particular, we show that the well-known $\textit{maximal matching}$ heuristic of $\textit{Vertex Cover}$ provides an excellent dominance bound. We introduce new general analysis techniques which apply to a wide range of problems and heuristics for this measure. Certain general results relating approximation ratio and combinatorial dominance guarantees for optimization problems over subsets are established. We prove certain limitations on the combinatorial dominance guarantees of polynomial-time approximation schemes (PTAS), and give inapproximability results for the problems above.


Volume: DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)
Section: Proceedings
Published on: January 1, 2007
Imported on: May 10, 2017
Keywords: combinatorial optimization,approximation algorithms,domination analysis,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

2 Documents citing this article

Consultation statistics

This page has been seen 335 times.
This article's PDF has been downloaded 396 times.