Discrete Mathematics & Theoretical Computer Science |

- 1 Department of Computer Science [Victoria]

We study the Hamming distance from polynomials to classes of polynomials that share certain properties of irreducible polynomials. The results give insight into whether or not irreducible polynomials can be effectively modeled by these more general classes of polynomials. For example, we prove that the number of degree $n$ polynomials of Hamming distance one from a randomly chosen set of $\lfloor 2^n/n \rfloor$ odd density polynomials, each of degree $n$ and each with non-zero constant term, is asymptotically $(1-e^{-4}) 2^{n-2}$, and this appears to be inconsistent with the numbers for irreducible polynomials. We also conjecture that there is a constant $c$ such that every polynomial has Hamming distance at most $c$ from an irreducible polynomial. Using exhaustive lists of irreducible polynomials over $\mathbb{F}_2$ for degrees $1 ≤ n ≤ 32$, we count the number of polynomials with a given Hamming distance to some irreducible polynomial of the same degree. Our work is based on this "empirical" study.

Source: HAL:hal-01184798v1

Volume: DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)

Section: Proceedings

Published on: January 1, 2007

Imported on: May 10, 2017

Keywords: irreducible polynomials,random polynomials,Hamming distance,finite fields,binary strings,asymptotics,exhaustive enumeration,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG]

This page has been seen 256 times.

This article's PDF has been downloaded 450 times.