Malwina Luczak
-
Concentration of measure and mixing for Markov chains
dmtcs:3558 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
-
https://doi.org/10.46298/dmtcs.3558
Concentration of measure and mixing for Markov chainsArticle
Authors: Malwina Luczak 1
NULL
Malwina Luczak
1 Department of Mathematics London School of Economics
We consider Markovian models on graphs with local dynamics. We show that, under suitable conditions, such Markov chains exhibit both rapid convergence to equilibrium and strong concentration of measure in the stationary distribution. We illustrate our results with applications to some known chains from computer science and statistical mechanics.
Yevgeniy Kovchegov;Peter T. Otto, SpringerBriefs in probability and mathematical statistics, Large Deviations and Equilibrium Macrostate Phase Transitions, pp. 37-51, 2018, omid:br/062602230686 doi:10.1007/978-3-319-77019-2_3.
Yevgeniy Kovchegov;Peter T. Otto, SpringerBriefs in probability and mathematical statistics, Statistical Mechanical Models and Glauber Dynamics, pp. 23-36, 2018, omid:br/062602230687 doi:10.1007/978-3-319-77019-2_2.
Yevgeniy Kovchegov;Peter T. Otto, SpringerBriefs in probability and mathematical statistics, Aggregate Path Coupling: Higher Dimensional Theory, pp. 65-79, 2018, omid:br/062602230688 doi:10.1007/978-3-319-77019-2_6.
Yevgeniy Kovchegov;Peter T. Otto, SpringerBriefs in probability and mathematical statistics, Coupling, Path Coupling, and Mixing Times, pp. 1-22, 2018, omid:br/062602230689 doi:10.1007/978-3-319-77019-2_1.
Yevgeniy Kovchegov;Peter T. Otto, SpringerBriefs in probability and mathematical statistics, Aggregate Path Coupling: One-Dimensional Theory, pp. 55-64, 2018, omid:br/062602230691 doi:10.1007/978-3-319-77019-2_5.