Discrete Mathematics & Theoretical Computer Science |

- 1 Department of Mathematical Stochastics [Freiburg]

Polynomial bounds and tail estimates are derived for additive random recursive sequences, which typically arise as functionals of recursive structures, of random trees, or in recursive algorithms. In particular they arise as parameters of divide and conquer type algorithms. We mainly focuss on polynomial tails that arise due to heavy tail bounds of the toll term and the starting distributions. Besides estimating the tail probability directly we use a modified version of a theorem from regular variation theory. This theorem states that upper bounds on the asymptotic tail probability can be derived from upper bounds of the Laplace―Stieltjes transforms near zero.

Source: HAL:hal-01194690v1

Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science

Section: Proceedings

Published on: January 1, 2008

Imported on: May 10, 2017

Keywords: polynomial tails,regular variation,random recursive sequences,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 174 times.

This article's PDF has been downloaded 226 times.