Martin Möhle - Convergence to the coalescent and its relation to the time back to the most recent common ancestor

dmtcs:3573 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science - https://doi.org/10.46298/dmtcs.3573
Convergence to the coalescent and its relation to the time back to the most recent common ancestorArticle

Authors: Martin Möhle ORCID1

  • 1 Mathematisches Institut [Dusseldorf]

For the class of haploid exchangeable population models with non-overlapping generations and population size $N$ it is shown that, as $N$ tends to infinity, convergence of the time-scaled ancestral process to Kingman's coalescent and convergence in distribution of the scaled times back to the most recent common ancestor (MRCA) to the corresponding times back to the MRCA of the Kingman coalescent are equivalent. Extensions of this equivalence are derived for exchangeable population models being in the domain of attraction of a coalescent process with multiple collisions. The proofs are based on the property that the total rates of a coalescent with multiple collisions already determine the distribution of the coalescent. It is finally shown that similar results cannot be obtained for the full class of exchangeable coalescents allowing for simultaneous multiple collisions of ancestral lineages, essentially because the total rates do not determine the distribution of a general exchangeable coalescent.


Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: simultaneous multiple collisions,most recent common ancestor,absorption time,ancestral process,coalescent,exchangeability,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

Consultation statistics

This page has been seen 252 times.
This article's PDF has been downloaded 379 times.