Henning Sulzbach
-
A functional limit law for the profile of plane-oriented recursive trees.
dmtcs:3575 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
-
https://doi.org/10.46298/dmtcs.3575
A functional limit law for the profile of plane-oriented recursive trees.
Authors: Henning Sulzbach 1
NULL
Henning Sulzbach
1 Institute for Mathematics [Frankfurt ]
We give a functional limit law for the normalized profile of random plane-oriented recursive trees. The proof uses martingale convergence theorems in discrete and continuous-time. This complements results of Hwang (2007).
Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: plane-oriented recursive trees,random trees,profile of trees,preferential attachment,branching random walk,martingales,analysis of algorithms,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
3 Documents citing this article
Source : OpenCitations
Devroye, Luc; Janson, Svante, 2011, Long And Short Paths In Uniform Random Recursive Dags, Arkiv Fรถr Matematik, 49, 1, pp. 61-77, 10.1007/s11512-009-0118-0.
Grübel, Rudolf; Kabluchko, Zakhar, 2017, Edgeworth Expansions For Profiles Of Lattice Branching Random Walks, Annales De l'Institut Henri Poincaré, Probabilités Et Statistiques, 53, 4, 10.1214/16-aihp785.
Kabluchko, Zakhar; Marynych, Alexander; Sulzbach, Henning, 2017, General Edgeworth Expansions With Applications To Profiles Of Random Trees, The Annals Of Applied Probability, 27, 6, 10.1214/17-aap1285.