Discrete Mathematics & Theoretical Computer Science |

- 1 Institut für Mathematische Statistik [Munster]

Gantert and Müller (2006) proved that a critical branching random walk (BRW) on the integer lattice is transient by analyzing this problem within the more general framework of branching Markov chains and making use of Lyapunov functions. The main purpose of this note is to show how the same result can be derived quite elegantly and even extended to the nonlattice case within the theory of weighted branching processes. This is done by an analysis of certain associated random weighted location measures which, upon taking expectations, provide a useful connection to the well established theory of ordinary random walks with i.i.d. increments. A brief discussion of the asymptotic behavior of the left- and rightmost particles in a critical BRW as time goes to infinity is provided in the final section by drawing on recent work by Hu and Shi (2008).

Source: HAL:hal-01194659v1

Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science

Section: Proceedings

Published on: January 1, 2008

Imported on: May 10, 2017

Keywords: branching random walk,critical regime,recurrence,transience,minimal and maximal position,random weighted location measure,renewal theory,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

This page has been seen 218 times.

This article's PDF has been downloaded 292 times.