Jakub Kozik
-
Subcritical pattern languages for and/or trees
dmtcs:3582 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
-
https://doi.org/10.46298/dmtcs.3582Subcritical pattern languages for and/or treesConference paper
Authors: Jakub Kozik 1
NULL
Jakub Kozik
- 1 Theoretical Computer Science Department [Krakow]
Let $P_k(f)$ denote the density of and/or trees defining a boolean function $f$ within the set of and/or trees with fixed number of variables $k$. We prove that there exists constant $B_f$ such that $P_k(f) \sim B_f \cdot k^{-L(f)-1}$ when $k \to \infty$, where $L(f)$ denote the complexity of $f$ (i.e. the size of a minimal and/or tree defining $f$). This theorem has been conjectured by Danièle Gardy and Alan Woods together with its counterpart for distribution $\pi$ defined by some critical Galton-Watson process. Methods presented in this paper can be also applied to prove the analogous property for $\pi$.
Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [en] And/Or trees, probability distribution for Boolean functions, tree enumeration