Jakub Kozik - Subcritical pattern languages for and/or trees

dmtcs:3582 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science - https://doi.org/10.46298/dmtcs.3582
Subcritical pattern languages for and/or treesArticle

Authors: Jakub Kozik 1

  • 1 Theoretical Computer Science Department [Krakow]

Let $P_k(f)$ denote the density of and/or trees defining a boolean function $f$ within the set of and/or trees with fixed number of variables $k$. We prove that there exists constant $B_f$ such that $P_k(f) \sim B_f \cdot k^{-L(f)-1}$ when $k \to \infty$, where $L(f)$ denote the complexity of $f$ (i.e. the size of a minimal and/or tree defining $f$). This theorem has been conjectured by Danièle Gardy and Alan Woods together with its counterpart for distribution $\pi$ defined by some critical Galton-Watson process. Methods presented in this paper can be also applied to prove the analogous property for $\pi$.


Volume: DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: And/Or trees,probability distribution for Boolean functions,tree enumeration,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM],[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS],[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]

8 Documents citing this article

Consultation statistics

This page has been seen 175 times.
This article's PDF has been downloaded 187 times.