Carine Pivoteau ; Bruno Salvy ; Michèle Soria
-
Boltzmann Oracle for Combinatorial Systems
dmtcs:3585 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
-
https://doi.org/10.46298/dmtcs.3585
Boltzmann Oracle for Combinatorial SystemsArticle
Authors: Carine Pivoteau 1; Bruno Salvy 2; Michèle Soria 1
NULL##0000-0002-4313-0679##NULL
Carine Pivoteau;Bruno Salvy;Michèle Soria
1 Algorithmes, Programmes et Résolution
2 Algorithms
Boltzmann random generation applies to well-defined systems of recursive combinatorial equations. It relies on oracles giving values of the enumeration generating series inside their disk of convergence. We show that the combinatorial systems translate into numerical iteration schemes that provide such oracles. In particular, we give a fast oracle based on Newton iteration.
Carine Pivoteau;Bruno Salvy;Michèle Soria, 2012, Algorithms for combinatorial structures: Well-founded systems and Newton iterations, arXiv (Cornell University), 119, 8, pp. 1711-1773, 10.1016/j.jcta.2012.05.007, http://arxiv.org/abs/1109.2688.
Alix Mougenot;Alexis Darrasse;Xavier Blanc;Michèle Soria, Lecture notes in computer science, Uniform Random Generation of Huge Metamodel Instances, pp. 130-145, 2009, 10.1007/978-3-642-02674-4_10.