Philippe Marchal
-
A note on the fragmentation of a stable tree
dmtcs:3586 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
-
https://doi.org/10.46298/dmtcs.3586
A note on the fragmentation of a stable treeArticle
Authors: Philippe Marchal 1
NULL
Philippe Marchal
1 Département de Mathématiques et Applications - ENS Paris
We introduce a recursive algorithm generating random trees, which we identify as skeletons of a continuous, stable tree. We deduce a representation of a fragmentation process on these trees.
Frederik Sørensen, 2023, A down‐up chain with persistent labels on multifurcating trees, Random Structures and Algorithms, 64, 2, pp. 354-400, 10.1002/rsa.21185, https://doi.org/10.1002/rsa.21185.
Thierry E. Huillet, 2023, Occupancy Problems Related to the Generalized Stirling Numbers, Journal of Statistical Physics, 191, 1, 10.1007/s10955-023-03216-1.
Olivier Bodini;Julien David;Philippe Marchal, Random-Bit Optimal Uniform Sampling for Rooted Planar Trees with Given Sequence of Degrees and Applications, pp. 97-114, 2016, 10.1007/978-3-319-29221-2_9, https://hal.science/hal-00932993.
Bénédicte Haas;Robin Stephenson, 2015, Scaling limits of $k$-ary growing trees, Annales de l Institut Henri Poincaré Probabilités et Statistiques, 51, 4, 10.1214/14-aihp622, https://doi.org/10.1214/14-aihp622.
Bénédicte Haas;Grégory Miermont;Jim Pitman;Matthias Winkel, 2008, Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models, The Annals of Probability, 36, 5, 10.1214/07-aop377, https://doi.org/10.1214/07-aop377.