F. Descouens ; H. Morita ; Y. Numata - A bijective proof of a factorization formula for Macdonald polynomials at roots of unity

dmtcs:3593 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3593
A bijective proof of a factorization formula for Macdonald polynomials at roots of unityConference paper

Authors: F. Descouens 1,2; H. Morita 3; Y. Numata 4

  • 1 Fields Institute for Research In Mathematical Sciences
  • 2 Department of Mathematics and Statistics [Toronto]
  • 3 Oyama National College of Technology
  • 4 Department of Mathematics [Sapporo]

[en]
We give a combinatorial proof of the factorization formula of modified Macdonald polynomials $\widetilde{H}_{\lambda} (X;q,t)$ when $t$ is specialized at a primitive root of unity. Our proof is restricted to the special case where $\lambda$ is a two columns partition. We mainly use the combinatorial interpretation of Haiman, Haglund and Loehr giving the expansion of $\widetilde{H}_{\lambda} (X;q,t)$ on the monomial basis.

[fr]
Nous présentons une preuve combinatoire de la formule de factorisation des polynômes de Macdonald modifiés $\widetilde{H}_{\lambda} (X;q,t)$ quand $t$ est spécialisé à une racine primitive de l'unité. Notre preuve se restreint au cas particulier des partitions $\lambda$ n'ayant que deux colonnes. On utilise principalement l'interprétation combinatoire de Haglund, Haiman and Loehr donnant le développement de $\widetilde{H}_{\lambda} (X;q,t)$ sur la base des fonctions monomiales.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Macdonald polynomials, roots of unity

1 Document citing this article

Consultation statistics

This page has been seen 300 times.
This article's PDF has been downloaded 305 times.