Mark Skandera - The cluster basis $\mathbb{Z}[x_{1,1},…,x_{3,3}]

dmtcs:3598 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3598
The cluster basis $\mathbb{Z}[x_{1,1},…,x_{3,3}]Conference paper

Authors: Mark Skandera ORCID1

  • 1 Lehigh University [Bethlehem]

[en]
We show that the set of cluster monomials for the cluster algebra of type $D_4$ contains a basis of the $\mathbb{Z}$-module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and nonnegative. These results support a conjecture of Fomin and Zelevinsky on the equality of the cluster and dual canonical bases. In the event that this conjectured equality is true, our results also imply an explicit factorization of each dual canonical basis element as a product of cluster variables.

[fr]
Nous montrons que l'ensemble des monômes de l'algebre "cluster'' $D_4$ contient une base-$\mathbb{Z}$ pour le module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. Nous montrons aussi que les matrices transitoires qui relient cette base à la base canonique duale sont unitriangulaires. Ces résultats renforcent une conjecture de Fomin et de Zelevinsky sur l'égalité de ces deux bases. Si cette égalité s'avérait être vraie, notre résultat donnerait aussi une factorisation des éléments de la base canonique duale.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cluster algebra, dual canonical basis

Consultation statistics

This page has been seen 356 times.
This article's PDF has been downloaded 223 times.