James Haglund ; Sarah Mason ; Kurt Luoto ; Steph van Willigenburg
-
Quasisymmetric Schur functions
dmtcs:3605 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
-
https://doi.org/10.46298/dmtcs.3605
Quasisymmetric Schur functionsArticle
Authors: James Haglund 1; Sarah Mason 2; Kurt Luoto 3; Steph van Willigenburg 4
NULL##NULL##NULL##NULL
James Haglund;Sarah Mason;Kurt Luoto;Steph van Willigenburg
We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions.
The Combinatorics of Macdonald Polynomials and Related Objects; Funder: National Science Foundation; Code: 0901467
PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0603351
Funder: Natural Sciences and Engineering Research Council of Canada
The Combinatorics of Macdonald Polynomials; Funder: National Science Foundation; Code: 0553619
Bibliographic References
52 Documents citing this article
Elizabeth Niese;Sheila Sundaram;Stephanie van Willigenburg;Julianne Vega;Shiyun Wang, 2024, 0-Hecke modules for row-strict dual immaculate functions, arXiv (Cornell University), 10.1090/tran/9006, https://arxiv.org/abs/2202.00708.
Elizabeth Niese;Sheila Sundaram;Stephanie van Willigenburg;Julianne Vega;Shiyun Wang, 2023, Row-strict dual immaculate functions, arXiv (Cornell University), 149, pp. 102540, 10.1016/j.aam.2023.102540, https://arxiv.org/abs/2202.00706.
Farid Aliniaeifard;Victor Wang;Stephanie van Willigenburg, 2023, P-partition power sums, European Journal of Combinatorics, 110, pp. 103688, 10.1016/j.ejc.2023.103688.
Sylvie Corteel;Olya Mandelshtam;Austin Roberts, 2023, Expanding the quasisymmetric Macdonald polynomials in the fundamental basis, Algebraic Combinatorics, 6, 4, pp. 941-954, 10.5802/alco.289, https://doi.org/10.5802/alco.289.
A. Abram;C. Reutenauer, 2022, The stylic monoid, Semigroup Forum, 105, 1, pp. 1-45, 10.1007/s00233-022-10285-3.
Nicholas A. Loehr;Elizabeth Niese, 2022, Combinatorics of the immaculate inverse Kostka matrix, Algebraic Combinatorics, 4, 6, pp. 1119-1142, 10.5802/alco.193, https://doi.org/10.5802/alco.193.
Dominic Searles, 2019, Polynomial bases: Positivity and Schur multiplication, Transactions of the American Mathematical Society, 373, 2, pp. 819-847, 10.1090/tran/7670, https://doi.org/10.1090/tran/7670.
Ezgi Kantarcı Oğuz, 2019, A Note on Jing and Li’s Type $$\varvec{B}$$ B Quasisymmetric Schur Functions, Annals of Combinatorics, 23, 1, pp. 159-170, 10.1007/s00026-019-00415-0.
S. van Willigenburg, 2019, Dual graphs from noncommutative and quasisymmetric Schur functions, Proceedings of the American Mathematical Society, 148, 3, pp. 1063-1078, 10.1090/proc/14786, https://doi.org/10.1090/proc/14786.
Sebastian König, 2019, The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions, Algebraic Combinatorics, 2, 5, pp. 735-751, 10.5802/alco.58, https://doi.org/10.5802/alco.58.
Edward E. Allen;Joshua Hallam;Sarah K. Mason, 2018, Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions, Journal of Combinatorial Theory Series A, 157, pp. 70-108, 10.1016/j.jcta.2018.01.006, https://doi.org/10.1016/j.jcta.2018.01.006.
Maki Nakasuji;Ouamporn Phuksuwan;Yoshinori Yamasaki, 2018, On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions, Advances in Mathematics, 333, pp. 570-619, 10.1016/j.aim.2018.05.014, https://doi.org/10.1016/j.aim.2018.05.014.
Chris Berg;Nantel Bergeron;Franco Saliola;Luis Serrano;Mike Zabrocki, 2017, Multiplicative structures of the immaculate basis of non-commutative symmetric functions, Journal of Combinatorial Theory Series A, 152, pp. 10-44, 10.1016/j.jcta.2017.05.003, https://doi.org/10.1016/j.jcta.2017.05.003.
Christine Bessenrodt;Vasu Tewari;Stephanie van Willigenburg, 2016, Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions, Journal of Combinatorial Theory Series A, 137, pp. 179-206, 10.1016/j.jcta.2015.08.005, https://doi.org/10.1016/j.jcta.2015.08.005.
Chris Berg;Nantel Bergeron;Franco Saliola;Luis Serrano;Mike Zabrocki, 2014, A Lift of the Schur and Hall–Littlewood Bases to Non-commutative Symmetric Functions, Canadian Journal of Mathematics, 66, 3, pp. 525-565, 10.4153/cjm-2013-013-0, https://doi.org/10.4153/cjm-2013-013-0.
Kurt Luoto;Stefan Mykytiuk;Stephanie van Willigenburg, SpringerBriefs in mathematics, Introduction, pp. 1-3, 2013, 10.1007/978-1-4614-7300-8_1.
Kurt Luoto;Stefan Mykytiuk;Stephanie van Willigenburg, SpringerBriefs in mathematics, Classical combinatorial concepts, pp. 5-17, 2013, 10.1007/978-1-4614-7300-8_2.
Kurt Luoto;Stefan Mykytiuk;Stephanie van Willigenburg, SpringerBriefs in mathematics, Composition tableaux and further combinatorial concepts, pp. 51-62, 2013, 10.1007/978-1-4614-7300-8_4.
Nicolas Loehr;Luis Serrano;Gregory Warrington, 2013, Transition matrices for symmetric and quasisymmetric Hall–Littlewood polynomials, Journal of Combinatorial Theory Series A, 120, 8, pp. 1996-2019, 10.1016/j.jcta.2013.07.008, https://doi.org/10.1016/j.jcta.2013.07.008.