James Haglund ; Sarah Mason ; Kurt Luoto ; Steph van Willigenburg - Quasisymmetric Schur functions

dmtcs:3605 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3605
Quasisymmetric Schur functionsConference paper

Authors: James Haglund 1; Sarah Mason 2; Kurt Luoto 3; Steph van Willigenburg 4,5

[en]
We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions.

[fr]
Nous étudions une nouvelle base des fonctions quasisymétriques, les fonctions de quasiSchur. Ces fonctions sont obtenues en spécialisant les fonctions de Macdonald dissymétrique. Nous décrivons les compositions que donne une simple fonction quasisymétriques. Nous décrivons aussi une règle par certaines fonctions de Schur.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] nonsymmetric Macdonald polynomials, Pieri rule, quasisymmetric functions, Schur functions
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada
  • The Combinatorics of Macdonald Polynomials; Funder: National Science Foundation; Code: 0553619
  • The Combinatorics of Macdonald Polynomials and Related Objects; Funder: National Science Foundation; Code: 0901467
  • PostDoctoral Research Fellowship; Funder: National Science Foundation; Code: 0603351

43 Documents citing this article

Consultation statistics

This page has been seen 363 times.
This article's PDF has been downloaded 379 times.