François Bergeron ; Aaron Lauve
-
Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables
dmtcs:3606 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
-
https://doi.org/10.46298/dmtcs.3606
Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variablesArticle
Authors: François Bergeron 1; Aaron Lauve 1
0000-0003-4566-6351##NULL
François Bergeron;Aaron Lauve
1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]
We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras.