François Bergeron ; Aaron Lauve - Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables

dmtcs:3606 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3606
Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variablesConference paper

Authors: François Bergeron ORCID1; Aaron Lauve 1

  • 1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

[en]
We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras.

[fr]
Nous analysons la structure de l'algèbre $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions'', on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensoriel, obtenant ainsi un analogue des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas $|\mathbf{x}|= \infty$, nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Chevalley theorem, symmetric group, noncommutative symmetric polynomials, set partitions
Funding:
    Source : OpenAIRE Graph
  • Funder: Natural Sciences and Engineering Research Council of Canada

Consultation statistics

This page has been seen 437 times.
This article's PDF has been downloaded 548 times.