Gilles Schaeffer ; Ekaterina Vassilieva
-
Partitioned Cacti: a Bijective Approach to the Cycle Factorization Problem
dmtcs:3614 -
Discrete Mathematics & Theoretical Computer Science,
January 1, 2008,
DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
-
https://doi.org/10.46298/dmtcs.3614Partitioned Cacti: a Bijective Approach to the Cycle Factorization ProblemConference paperAuthors: Gilles Schaeffer
1; Ekaterina Vassilieva
1
0000-0001-6073-8574##NULL
Gilles Schaeffer;Ekaterina Vassilieva
[en]
In this paper we construct a bijection for partitioned 3-cacti that gives raise to a new formula for enumeration of factorizations of the long cycle into three permutations with given number of cycles.
[fr]
Dans cet article, nous construisons une bijection pour 3-cacti partitionnés faisant apparaître une nouvelle formule pour l’énumération des factorisations d’un long cycle en trois permutations ayant un nombre donné de cycles.
Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] cacti, permutations, cactus trees, Jackson formula, Harer-Zagier formula