Eric Fusy - New bijective links on planar maps

dmtcs:3628 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3628
New bijective links on planar mapsConference paper

Authors: Eric Fusy 1

  • 1 Department of Mathematics [Burnaby]

[en]
This article describes new bijective links on planar maps, which are of incremental complexity and present original features. The first two bijections $\Phi _{1,2}$ are correspondences on oriented planar maps. They can be considered as variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate only on the embeddings in a simple local way. In turn, $\Phi_{1,2}$ yield two new bijections $F_{1,2}$ between families of (rooted) maps. (i) By identifying maps with specific constrained orientations, $\Phi_2 \circ \Phi_1$ specialises to a bijection $F_1$ between 2-connected maps and irreducible triangulations; (ii) $F_1$ gives rise to a bijection $F_2$ between loopless maps and triangulations, observing that these decompose respectively into 2-connected maps and into irreducible triangulations in a parallel way.

[fr]
Cet article décrit de nouveaux liens bijectifs sur les cartes planaires. Nos constructions sont de complexité croissante et présentent des caractéristiques originales. Les deux premières bijections $\Phi _{1,2}$ portent sur des cartes orientées. Elle peuvent être vues comme des variations sur une construction classique de posets sans $N$ à partir d'orientations bipolaires, adaptées ici pour opérer de manière très simple sur le plongement. Les bijections $\Phi _{1,2}$ entrainent à leur tour deux nouvelles bijections $F_{1,2}$ entre familles de cartes (enracinées). (i) En identifiant les cartes avec certaines orientations contraintes, $\Phi_2 \circ \Phi_1$ se spécialise en une bijection $F_1$ entre cartes 2-connexes et triangulations irréductibles, (ii) $F_1$ induit une bijection $F_2$ entre cartes sans boucles et triangulations, qui se décomposent respectivement en cartes 2-connexes et en triangulations irréductibles de manière parallèle.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Planar maps, bijections, orientations

Consultation statistics

This page has been seen 273 times.
This article's PDF has been downloaded 306 times.