Valentin Féray - Combinatorial interpretation and positivity of Kerov's character polynomials

dmtcs:3629 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3629
Combinatorial interpretation and positivity of Kerov's character polynomialsConference paper

Authors: Valentin Féray ORCID1

[en]
Kerov's polynomials give irreducible character values of the symmetric group in term of the free cumulants of the associated Young diagram. Using a combinatorial approach with maps, we prove in this article a positivity result on their coefficients, which extends a conjecture of S. Kerov.

[fr]
Les polynômes de Kerov expriment les valeurs des caractères irréductibles du groupe symétrique en fonction des cumulants libres du diagramme de Young associé. Grâce à une approche combinatoire à base de cartes, nous prouvons dans cet article un résultat de positivité sur leurs coefficients, qui généralise une conjecture de S. Kerov.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] Representations, symmetric group, maps

11 Documents citing this article

Consultation statistics

This page has been seen 478 times.
This article's PDF has been downloaded 290 times.