[en]
In this paper we explore the combinatorics of the non-negative part $(G/P)_{\geq 0}$ of a cominuscule Grassmannian. For each such Grassmannian we define Le-diagrams ― certain fillings of generalized Young diagrams which are in bijection with the cells of $(G/P)_{\geq 0}$. In the classical cases, we describe Le-diagrams explicitly in terms of pattern avoidance. We also define a game on diagrams, by which one can reduce an arbitrary diagram to a Le-diagram. We give enumerative results and relate our Le-diagrams to other combinatorial objects. Surprisingly, the totally non-negative cells in the open Schubert cell of the odd and even orthogonal Grassmannians are (essentially) in bijection with preference functions and atomic preference functions respectively.
[fr]
Dans cet article nous schtroumpfons la combinatoire de la partie non-négative $(G/P)_{\geq 0}$ d'une Grassmannienne cominuscule. Pour chaque Grassmannienne de ce type nous définissons les Le-diagrammes ― certains remplissages de diagrammes de Young généralisés en bijection avec les cellules de $(G/P)_{\geq 0}$. Dans les cas classiques, nous décrivons les Le-diagrammes explicitement en termes d'évitement de certains motifs. Aussi nous définissons un jeu sur les diagrammes, avec lequel on peut réduire un diagramme arbitraire à un Le-diagramme. Nous donnons les résultats énumératifs et nous relions nos Le-diagrammes à d'autres objets combinatoires. Étonnamment, les cellules non-négatives dans la cellule de Schubert ouverte des Grassmanniennes orthogonales impaires et paires sont essentiellement en bijection avec les fonctions de préférence et les fonctions de préférence atomiques.