Thomas Lam ; Lauren Williams - Total positivity for cominuscule Grassmannians

dmtcs:3633 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3633
Total positivity for cominuscule GrassmanniansArticle

Authors: Thomas Lam 1; Lauren Williams 1

  • 1 Department of Mathematics [Cambridge]

In this paper we explore the combinatorics of the non-negative part $(G/P)_{\geq 0}$ of a cominuscule Grassmannian. For each such Grassmannian we define Le-diagrams ― certain fillings of generalized Young diagrams which are in bijection with the cells of $(G/P)_{\geq 0}$. In the classical cases, we describe Le-diagrams explicitly in terms of pattern avoidance. We also define a game on diagrams, by which one can reduce an arbitrary diagram to a Le-diagram. We give enumerative results and relate our Le-diagrams to other combinatorial objects. Surprisingly, the totally non-negative cells in the open Schubert cell of the odd and even orthogonal Grassmannians are (essentially) in bijection with preference functions and atomic preference functions respectively.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: Total positivity,Grassmannian,tableaux,preference functions,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
Funding:
    Source : OpenAIRE Graph
  • Combinatorics in geometry and representation theory; Funder: National Science Foundation; Code: 0600677

Consultation statistics

This page has been seen 223 times.
This article's PDF has been downloaded 489 times.