Christian Stump - $q,t$-Fuß-Catalan numbers for complex reflection groups

dmtcs:3639 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3639
$q,t$-Fuß-Catalan numbers for complex reflection groupsConference paper

Authors: Christian Stump 1

  • 1 Faculty of Mathematics [Vienna]

[en]
In type $A$, the $q,t$-Fuß-Catalan numbers $\mathrm{Cat}_n^{(m)}(q,t)$ can be defined as a bigraded Hilbert series of a module associated to the symmetric group $\mathcal{S}_n$. We generalize this construction to (finite) complex reflection groups and exhibit some nice conjectured algebraic and combinatorial properties of these polynomials in $q$ and $t$. Finally, we present an idea how these polynomials could be related to some graded Hilbert series of modules arising in the context of rational Cherednik algebras. This is work in progress.

[fr]
Dans le cas du type $A$, les $q,t$-nombres de Fuß-Catalan $\mathrm{Cat}_n^{(m)}(q,t)$ peuvent être définis comme la série de Hilbert bigraduée d'un certain module associé au groupe symétrique $\mathcal{S}_n$. Nous généralisons cette construction aux groupes de réflexion complexes (finis) et nous formulons de jolies propriétés (conjecturales) algébriques et combinatoires de ces polynômes en $q$ et $t$. Enfin, nous décrivons une idée sur la manière dont ces polynômes pourraient être liés à certaines séries de Hilbert de modules apparaissant dans le contexte des algèbres de Cherednik rationnelles. Ceci est un travail en cours.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] $q t$-Catalan number, reflection group, Shi arrangement, coinvariant ring, rational Cherednik algebras

2 Documents citing this article

Consultation statistics

This page has been seen 859 times.
This article's PDF has been downloaded 777 times.