Vincent Pilaud ; Francisco Santos - Multi-triangulations as complexes of star polygons

dmtcs:3642 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3642
Multi-triangulations as complexes of star polygonsConference paper

Authors: Vincent Pilaud ORCID1; Francisco Santos ORCID2,3

[en]
A $k$-triangulation of a convex polygon is a maximal set of diagonals so that no $k+1$ of them mutually cross. $k$-triangulations have received attention in recent literature, with motivation coming from several interpretations of them. We present a new way of looking at $k$-triangulations, where certain star polygons naturally generalize triangles for $k$-triangulations. With this tool we give new, direct proofs of the fundamental properties of $k$-triangulations (number of edges, definition of flip). This interpretation also opens up new avenues of research that we briefly explore in the last section.

[fr]
Une $k$-triangulation d'un polygone convexe est un ensemble maximal de diagonales ne contenant pas $k+1$ arêtes qui se croisent deux à deux. Les $k$-triangulations ont été récemment étudiées sous divers aspects dans la littérature. On présente ici un nouveau point de vue sur les $k$-triangulations, en introduisant certains polygones étoilés comme généralisation des triangles pour les $k$-triangulations. En utilisant ce nouvel outil, on donne des preuves directes des propriétés fondamentales des $k$-triangulations (nombre d'arêtes, définition du flip). Notre point de vue ouvre par ailleurs de nouveaux horizons de recherche que l'on présente rapidement dans la dernière partie.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [en] generalized triangulation, crossing-free graph, star polygon

22 Documents citing this article

Consultation statistics

This page has been seen 421 times.
This article's PDF has been downloaded 395 times.