Amel Kaouche ; Pierre Leroux - Graph weights arising from Mayer and Ree-Hoover theories of virial expansions

dmtcs:3646 - Discrete Mathematics & Theoretical Computer Science, January 1, 2008, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) - https://doi.org/10.46298/dmtcs.3646
Graph weights arising from Mayer and Ree-Hoover theories of virial expansionsArticle

Authors: Amel Kaouche 1; Pierre Leroux 1

  • 1 Laboratoire de combinatoire et d'informatique mathématique [Montréal]

We study graph weights (i.e., graph invariants) which arise naturally in Mayer's theory and Ree-Hoover's theory of virial expansions in the context of a non-ideal gas. We give special attention to the Second Mayer weight $w_M(c)$ and the Ree-Hoover weight $w_{RH}(c)$ of a $2$-connected graph $c$ which arise from the hard-core continuum gas in one dimension. These weights are computed using signed volumes of convex polytopes naturally associated with the graph $c$. Among our results are the values of Mayer's weight and Ree-Hoover's weight for all $2$-connected graphs $b$ of size at most $8$, and explicit formulas for certain infinite families.


Volume: DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
Section: Proceedings
Published on: January 1, 2008
Imported on: May 10, 2017
Keywords: graph invariants,non-ideal gas,hard sphere gas,Mayer weights,virial expansion.,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO],[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]

1 Document citing this article

Consultation statistics

This page has been seen 217 times.
This article's PDF has been downloaded 225 times.