Discrete Mathematics & Theoretical Computer Science |
Since singletons are the connected sets, the species $X$ of singletons can be considered as the combinatorial logarithm of the species $E(X)$ of finite sets. In a previous work, we introduced the (rational) species $\widehat{X}$ of pseudo-singletons as the analytical logarithm of the species of finite sets. It follows that $E(X) = \exp (\widehat{X})$ in the context of rational species, where $\exp (T)$ denotes the classical analytical power series for the exponential function in the variable $T$. In the present work, we use the species $\widehat{X}$ to create new efficient recursive schemes for the computation of molecular expansions of species of rooted trees, of species of assemblies of structures, of the combinatorial logarithm species, of species of connected structures, and of species of structures with weighted connected components.